Menu Close

Colloidal Zinc

Zinc: A promising antiviral agent

Oneel Patel of the Department of Surgery at the University of Melbourne said several studies have shown that zinc — an important trace mineral in the human body — is effective at slowing the rate of proliferation of the viruses causing SARS and the common cold.

This means that “zinc has the potential to act as a drug against COVID-19“, Patel said. He is now working on a treatment plan for patients involving intravenous zinc chloride.

According to Joseph Ischia, who is working with Patel on the project, they are now in the process of fast-tracking a clinical trial in order to test whether a daily injection of zinc chloride would benefit COVID-19 patients.

“There is currently no specific treatment available for patients who have COVID-19 and are at high risk of respiratory failure, which means this study has the potential to have an enormous positive impact on their clinical outcomes,” Ischia said.

He and Patel will be working in partnership with Phebra Chief Executive Officer Mal Eutick, as they will be using intravenous zinc injections, manufactured at Phebra’s multi-purpose sterile injectables plant in Sydney, during the trial.

“Zinc has been proven to be effective in treating severe pneumonia and other viruses although not COVID-19 to date. This trial is an extraordinary opportunity to discover if IV zinc can help us respond to the current pandemic,” Eutick said. Should their trials prove successful, the treatment could be of great help especially for high-risk elderly patients

More news on #nutrition

Research points to quercetin, zinc as natural coronavirus cures

Prepper tips: 7 Ways to protect yourself from the coronavirus

5 Effective ways to boost immunity during the coronavirus outbreak

Nano zinc, an alternative to conventional zinc as animal feed supplement: A review, “highly bio-available, growth promoting, antibacterial, immuno-modulatory and many more effects of nano zinc (nZn). These can be used at lower doses and can provide better result than the conventional Zn sources. size is inversely proportional to the antibacterial property which means smaller the size of ZnO, better is the antibacterial activity”. Colloidal is better than ionic.

Partha S.SwainaSomu B.N.RaobDuraisamyRajendranbGeorgeDominicaSellappanSelvarajub

Zinc ‘keeps immune system in check’ Researchers say they have gained a key insight into how zinc helps the immune system fight infection. Zinc has been shown to reduce the severity of the common cold in humans and possibly shorten its duration.

Zinc can be an ‘effective treatment’ for common colds experts believe zinc medications may help prevent and lessen infections by coating the common cold viruses and stopping them from entering the body through the thin lining of the nose. zinc aids the immune system and may dampen down some of the unpleasant reactions the body has to an invading virus.  Children who took 15mg of zinc syrup or zinc lozenges daily for five months or longer caught fewer colds and took less time offschool.


Zinc Deficiency Mechanism Linked to Ageing, Multiple Diseases

CORVALLIS, Ore. – A new study has outlined for the first time a biological mechanism by which zinc deficiency can develop with age, leading to a decline of the immune system and increased inflammation associated with many health problems, including cancer, heart disease, autoimmune disease and diabetes. The research was done…



Zinc ‘keeps immune system in check’

Researchers say they have gained a key insight into how zinc helps the immune system fight infection. A study shows that zinc stops the immune system from spiralling out of control, as happens when people develop sepsis. The researchers say the findings could also explain why taking zinc supplements at…


  • zinc

16 February 11 01:18

Zinc Deficiency Mechanism Linked to Ageing, Multiple Diseases,  both animal and human studies that zinc deficiency can cause DNA damage, and this new work shows how it can help lead to systemic inflammation,”

Journal Reference:

  1. Carmen P. Wong, Kathy R. Magnusson, Emily Ho. Increased inflammatory response in aged mice is associated with age-related zinc deficiency and zinc transporter dysregulationThe Journal of Nutritional Biochemistry, 2012; DOI: 10.1016/j.jnutbio.2012.07.005

Zinc protects brain cells from effects of copper toxicity

More news on zinc

Zinc plays key role in supporting key biological processes

How zinc levels affect your immune system

8 ways zinc turbocharges your body for peak performance

Coronary artery disease associated with copper and zinc imbalance

Zinc deficiency mistakes you might not realize you’re making

Zinc deficiencies cause invisible health problems, including digestion problems, study finds

Avoid the zinc deficiency trap – Boost health, resiliency and overall well-being with this one essential mineral

Dr. Lawrence Wilson has many more facts about copper toxicity in a 20 page article at:

Antimicrobial and Antioxidant Potentials of Biosynthesized Colloidal Zinc Oxide Nanoparticles for a Fortified Cold Cream Formulation: A Potent Nanocosmeceutical Application

Zinc is important for keeping your immune system STRONG Learn more about the health benefits of zinc and other natural virus fighters

 Partha S.SwainaSomu B.N.RaobDuraisamyRajendranbGeorgeDominicaSellappanSelvarajub

Zinc for acne: Does it work?
Zinc may help prevent and treat acne breakouts. A range of oral and topical medications for acne use zinc. Increasing dietary intake of zinc may also help.  Zinc is an essential mineral that the body needs to perform some important functions. The National Institutes of Health (NIH) note that zinc is essential for the following bodily processes:

  • growth during childhood and adolescence, wound healing, enzyme activity, immune system functioning, cell division, DNA and protein synthesis

“Why you need Zinc and How to Get It”, Adults who are low on zinc can have hair loss, diarrhea, sores on their eyes and skin, and loss of appetite. It also can affect a man’s sexual desire. WebMD, May 22/20 at


Adams et al., 2006

L.K. Adams, D.Y. Lyon, P.J.J. AlvarezComparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions

Water Res, 40 (2006), pp. 3527-3532

ArticleDownload PDFView Record in ScopusGoogle Scholar

Ahmed et al., 1997

Arabi et al., 2012

F. Arabi, M. Imandar, M. Negahdary, M. Imandar, M.T. Noughabi, H. Akbari-dastjerdi, et al.Investigation anti-bacterial effect of zinc oxide nanoparticles upon life of Listeria monocytogenes

Ann Biol Res, 3 (2012), pp. 3679-3685

View Record in ScopusGoogle Scholar

Auffan et al., 2009

M. Auffan, J. Rose, J.Y. Bottero, G.V. Lowry, J.P. Jolivet, M.R. WiesnerTowards a definition of inorganic nanoparticles from an environmental, health and safety perspective

Nat Nanotechnol, 4 (2009), pp. 634-641, 10.1038/NNANO.2009.242

CrossRefView Record in ScopusGoogle Scholar

Bray and Bettger, 1990

T.M. Bray, W.J. BettgerThe physiological role of zinc as an antioxidant

Free Radic Bio Med, 8 (1990), pp. 281-291

ArticleDownload PDFView Record in ScopusGoogle Scholar

Chen et al., 2007

Z. Chen, H. Meng, G. Xing, C. Chen, Y. ZhaoToxicological and biological effects of nanomaterials

Int J Nanotechnol, 4 (2007), pp. 179-196

CrossRefView Record in ScopusGoogle Scholar

Chesters, 1997

J.K. ChestersZinc

B.L. O’Dell, R.A. Sunde (Eds.), Handbook of nutritionally essential mineral elements, Marcel Dekker Inc, New York (1997), pp. 185-230

Google Scholar

Colagar et al., 2009

A.H. Colagar, E.T. Marzony, M.J. ChaichiZinc levels in seminal plasma are associated with sperm quality in fertile and infertile men

Nutr Res, 29 (2) (2009), pp. 82-88

ArticleDownload PDFView Record in ScopusGoogle Scholar

De Schamphelaere et al., 2004

K.A.C. De Schamphelaere, M. Canli, V. Van Lierde, I. Forrez, F. Vanhaecke, C.R. JanssenReproductive toxicity of dietary zinc to Daphnia magna

Aquat Toxicol, 70 (2004), pp. 233-244

ArticleDownload PDFView Record in ScopusGoogle Scholar

Feris et al., 2010

K. Feris, C. Otto, J. Tinker, D. Wingett, A. Punnoose, A. Thurber, et al.Electrostatic interactions affect nanoparticle-mediated toxicity to gram-negative bacterium Pseudomonas aeruginosa PAO1

Langmuir, 26 (2010), pp. 4429-4436

CrossRefView Record in ScopusGoogle Scholar

Fraker et al., 1984

P.J. Fraker, K. Hildebrandt, R.W. LueckAlteration of antibody-mediated responses of suckling mice to T-cell dependent and independent antigens by maternal marginal zinc deficiency: restoration of responsivity by nutritional repletion

J Nutr, 114 (1984), pp. 170-179

CrossRefView Record in ScopusGoogle Scholar

Frederickson et al., 2000

C.J. Frederickson, S.W. Suh, D. Silva, C.J. Frederickson, R.B. ThompsonImportance of zinc in the central nervous system: the zinc-containing neuron

J Nutr, 130 (5) (2000), pp. 1471S-1483S

CrossRefGoogle Scholar

Gerloff et al., 2009

K. Gerloff, C. Albrecht, A.W. Boots, I. Förster, R.P.F. SchinsCytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells

Nanotoxicology, 3 (2009), pp. 355-364

CrossRefView Record in ScopusGoogle Scholar

Heinlaan et al., 2008

M. Heinlaan, A. Ivask, I. Blinova, H.C. Dubourguier, A. KahruToxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans, Daphnia magna and Thamnocephalus platyurus

Chemosphere, 71 (2008), pp. 1308-1316

ArticleDownload PDFView Record in ScopusGoogle Scholar


Hillyer, R.M. AlbrechtGastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles

J Pharm Sci, 90 (2001), pp. 1927-1936

ArticleDownload PDFView Record in ScopusGoogle Scholar

H.L. Hooper, K. Jurkschat, A.J. Morgan, J. Bailey, A.J. Lawlor, D.J. Spurgeon, et al.Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix

Environ Int, 37 (2011), pp. 1111-1117

ArticleDownload PDFView Record in ScopusGoogle Scholar


T. Jin, D. Sun, J.Y. Su, H. Zhang, H.J. SueAntimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, and Salmonella enteritidis, Escherichia coli O157:H7

J Food Sci, 74 (2009), pp. M46-M52

CrossRefView Record in ScopusGoogle Scholar


N. Jones, B. Ray, K.T. Ranjit, A.C. MannaAntibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms

FEMS Microbiol Lett, 279 (2008), pp. 71-76

CrossRefView Record in ScopusGoogle Scholar

Y. Liu, L. He, A. Mustapha, H. Li, Z.Q. Hu, M. LinAntimicrobial activities of zinc oxide nanoparticles against Escherichia coli O157:H7

J Appl Microbiol, 107 (2009), pp. 1193-1201

CrossRefView Record in ScopusGoogle Scholar

C.F. NockelsMicornutrients and the immune response

Montana nutrition Conference Proceedings, Bozeman, Montana, 3.1 (1994)

Google Scholar

Padmavathy and Vijayaraghavan, 2008

N. Padmavathy, R. VijayaraghavanEnhanced bioactivity of ZnO nanoparticles- an antimicrobial study

Sci Technol Adv Mater, 9 (2008), pp. 1-7

View Record in ScopusGoogle Scholar

Parashuramulu et al., 2015

Piccinno et al., 2012

F. Piccinno, F. Gottschalk, S. Seeger, B. NowackIndustrial production quantities and uses of ten engineered nanomaterials for Europe and the world

J Nanopart Res, 14 (2012), pp. 1109-1120

Google Scholar

Prasad, 1991

A.S. PrasadDiscovery of human zinc deficiency and studies in an experimental human model

Am J Clin Nutr, 53 (1991), pp. 403-412

CrossRefView Record in ScopusGoogle Scholar

Raad et al., 2005

I.I. Raad, H.A. Hanna, M. Boktour, G. Chaiban, R.Y. Hachem, T. Dvorak, et al.Vancomycin-Resistant Enterococcus faecium: catheter colonization, esp gene, and decreased susceptibility to antibiotics in biofilm

Antimicrob Agents Ch, 49 (2005), pp. 5046-5050

View Record in ScopusGoogle Scholar

Rajendran et al., 2010

R. Rajendran, C. Balakumar, A.M.A. Hasabo, S. Jayakumar, K. Vaideki, E.M. RajeshUse of zinc oxide nanoparticles for production of antimicrobial textiles

Int J Eng Sci Technol, 2 (2010), pp. 202-208

View Record in ScopusGoogle Scholar

Rajendran et al., 2013

S.T. Reddy, A.J. van der Vlies, E. Simeoni, V. Angeli, G.J. Randolph, C.P. O’Neil, et al.Exploiting lymphatic transport and complement activation in nanoparticle vaccines

Nat Biotechnol, 25 (2007), pp. 1159-1164

CrossRefView Record in ScopusGoogle Scholar

Rosi and Mirkin, 2005

N.L. Rosi, C.A. MirkinNanostructures in biodiagnostics

Chem Rev, 105 (2005), pp. 1547-1562

CrossRefView Record in ScopusGoogle Scholar

Roughead and Kunkel, 1991

Z.K. Roughead, M.E. KunkelEffect of diet on bone matrix constituents

J Am Coll Nutr, 10 (1991), pp. 242-246

CrossRefView Record in ScopusGoogle Scholar

Roy et al., 2013

S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. DashCharacterization of enhanced antibacterial effects of novel silvernano particles

Nanotechnology, 18 (2007), pp. 1-9

View Record in ScopusGoogle Scholar

Sinha et al., 2011

R. Sinha, R. Karan, A. Sinha, S.K. KhareInteraction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells

Bioresour Technol, 102 (2011), pp. 1516-1520

ArticleDownload PDFView Record in ScopusGoogle Scholar

Spears, 2000

Stoimenov et al., 2002

P.K. Stoimenov, R.L. Klinger, G.L. Marchin, K.J. KlabundeMetal oxide nanoparticles as bactericidal agents

Langmuir, 18 (2002), pp. 6679-6686

View Record in ScopusGoogle Scholar

Suchý et al., 1998

P. Suchý, P.J.R. Suchý, E. StrakováMicro-elements in nutrition of farm animals (in Czech)

Google Scholar

Top and Ülkü, 2004

A. Top, S. ÜlküSilver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity

Appl Clay Sci, 27 (2004), pp. 13-19

ArticleDownload PDFView Record in ScopusGoogle Scholar

Uchida et al., 2001

View Record in ScopusGoogle Scholar

Zalewski et al., 2005

P.D. Zalewski, Q.T. Ai, G. Dion, J. Lata, M. Chiara, E.R. RichardZinc metabolism in airway epithelium and airway inflammation: basic mechanisms and clinical targets: a review

Pharmacol Ther, 105 (2005), pp. 127-149

ArticleDownload PDFView Record in ScopusGoogle Scholar

Zhao et al., 2014